CTM simulations in the CAM framework Phil Rasch and Peter Hess

- Initial implementation with
 - Francis Vitt, Stacy Walters (ACD)
 - Dani Bundy-Coleman (CGD)
- Next steps
 - Jean Francios LaMarque
 - Natalie Mahowald

- · Collaborative effort between
 - Climate and Global Dynamics Division
 - Atmospheric Chemistry Division
 - CCSM

CAM3

- · CAM = Community atmosphere Model
 - Descendant of CCM3
 - A general circulation model
 - Successfully used for reanalysis, data assimilation
 - A component of CCSM3.0
 (Community Climate System Model)
 - Physical components, land (CLM), ocean (POP), sea ice (CSIM)
 - Biophysical components
 - CSIM non-dynamic-vegetation PFTs compete for light and water, act as sources and sinks for water, heat, CO2, NVOC
 - Dynamic vegetation model optional
 - · Chemistry
 - Troposphere mechanism (MOZART, JF)
 - Middle atmosphere mechanism (MOZART, WACCM, DK)

Goals

- Add offline transport model functionality to CAM/CCSM
- Phase out of MATCH & MOZART as their functionality is replaced

Motivation

- ·Reduce software engineering burden
- ·Add opportunities for new science with CAM/CCSM

Software engineering issues

- · Coding can be done for offline/online once
- Input and output datasets uniform
- Large number of people (scientists and SE) looking at, developing the code
- Migration to revised models done more easily with source code maintainance tools
- Distribution to the outside world handled more easily

New Science

- Compare with measured quantities for real episodes.
- Allow feedbacks with climate with no recoding
- Much more comprehensive and consistent land model (physics and biogeochemistry)
 - Deposition, mobilization, VOCs, etc.
- · New functionality for "Climate System Modeling"
 - Interactive ocean, sea ice, land.
 - Prescribed meteorological atmosphere
 - Constituents can evolve and provide "information conduit" between other components
- Automatic connection to data assimilation, and forecasting

Transport processes in model

- Dynamics and Transport
 - 3 Dynamical Cores
 - 3 spectral resolutions (higher resolutions being planned)

Dynamics	Transport
Spectral Eulerian	Semi-Lagrangian
Semi-Lagrangian	Semi-Lagranian
Finite Volume	Finite Volume

- Boundary Layer parameterization follows Holtslag and Boville
- Shallow convection scheme follows Hack
- Deep convection follows Zhang and McFarlane

Offline capability only present with FV core

- Input files are always netCDF files
 - Met fields typically at 3 hr intervals
 - Pressure, temperature, winds, surface fluxes
- Model has been run with meteorology from
 - CAM3
 - NCEP
 - ECMWF
- Essentially whole GCM is run, resetting meteorology to prescribed met fields every timestep - kind of expensive for few tracers, cheap for many
- Like MATCH/MOZART Hydrologic Cycle and convection is always "predicted"

First Stage

- Two suites of tracers were employed
 - Low, Medium, High and "Inverse Medium", Unit (30 days)
 - Radon, Pseudo-Ozone, SF6, Neutral Biosphere Tracers (10 years)
 - NB sources from CASA (Randerson et al)
 - Monthly mean NB (seasonal rectification)
 - Diurnally varying NB (seasonal+daily rectification)
 - Shifted diurnal phase NB (sensititivity to errors in parameterization phase error)
- Each suite was run in offline CAM with different met fields
- Compared with Online-CAM, MOZART and MATCH

Second Stage

- · Online photochemical mechanism from JF
- 96 (gas and aerosol) species
- Compare CAM-online/CAM-offline simulations with CAM meteorology fields
 - Run for 1 year, look at fields on last day of year
- Compare CAM-offline CAM met fields to CAM-offline with NCEP fields
- Compare CAM-offline with NCEP reanalysis to MOZART-offline with NCEP reanalysis

Compare water vapor offline/online (about 500 mb) Zonal Avg

Formaldehyde

Hydrogen Peroxide

HNO3

Rel Diff

Rel Diff

First run of Stage 2 (NCEP reanalysis)

- Both models initialized on Jan 1 1990
- Average first 30 days of simulation

Where we are:

- More careful assessment of differing met fields
- First simulations with CGD aerosol suite
 - Bulk aerosol formulation
 - Dust (4 bins), sea salt (4bins), BC, OC, sulfate
 - Integrate with MOZART oxidants
 - Evaluation against MATCH
- Careful integration/evaluation with JF and rest of MOZART group against MOZART and online CAM
- · Commit to source repository next week
- Release to community perhaps by summer 2005

Local Hour of Max in Precipitation (Dai et al, 2004) Upper DJF Lower JJA

Pseudo-Ozone after 1 year

SF6 after 14 months

Example Tracer test Midlevel tracer Day 1

Midlevel tracer -- day 2

Midlevel tracer - Day 30

neutral biosphere surface mixing ratio annual average zonal average

Annual Average Sfc mixing ratio

Std diurnal source

Monthly mean source

Shifted diurnal source

Response to changes in forcing

Summary

- Rectification is very sensitive to numerics and phase of rapid transport processes (convection and PBL)
- Tracer is not so sensitive to changes in GG and aerosol forcing when vegetation is not dynamic.

Low level tracer, day 30

Low level tracer at 200mb day 30

low_tracer day_30 200_mb

Eulerian dynamics

high tracer, day 10, 800 mb

SL dynamics

FV dynamics

SF6 after 60 days

Importance of transport in CSM

- · Currently:
 - (3 water species, heat, momentum)
- Frequent need for other species
 - Aerosols and precursors
 - Chemical species (WACCM, tropospheric mechanism)
 - Carbon Cycle
 - Isotopes
 - Tagged species (regions, processes)

Transport of species

- A function of
 - Dynamics
 - Physical processes
 - · Chemistry
 - Convection
 - Scavenging
 - Turbulent transport
 - Numerical Artifacts

Computational Artifacts

- CAM works most naturally in terms of a "moist mixing ratio"
 - mass tracer/(mass dry air + mass of water vapor)
 - Consequently mixing ratio of all tracers should change if water vapor changes
- Lack of consistency in transport across processes!
 - Conservation
 - Preservation of a constant
 - Overshoot/Undershoot (monotonicity)

Transport(tracerA)+transport(tracerB)=Transport(tracerA+tracerB)

Revised CAM transport

- · Dry mixing ratio across physical processes.
- SLD and Eulerian models use dry mixing ratio. FV uses moist mixing ratio.
- Revised conversion to/from moist and dry mixing ratios.
- Improved fixer for Eulerian and semi-Lagrangian dynamical cores.

Remaining Problems

- A number of processes assume positive tracers
- Convection treats water vapor and heat differently from all other species (no flux limiting). Other species use a "positive definite", but not "monotonic" scheme.
- Nonlinearity of transport is detectable.
 How good is "good enough"?